PRINCIPLES OF ANALYSIS LECTURE 24 - FUNDAMENTAL THEOREM OF CALCULUS

PAUL L. BAILEY

Proposition 1. Let $f : [a,b] \to \mathbb{R}$ be differentiable on [a,b] such that $f' : [a,b] \to \mathbb{R}$ is integrable on [a,b]. Then

$$\int_{a}^{b} f' \, dx = f(b) - f(a).$$

Proof. Let $P = \{x_0, \ldots, x_n\}$ be any partition of [a, b]. By the Mean Value Theorem, there exists $c_i \in [x_{i-1}, x_i]$ such that $f'(c_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$. Thus,

$$m_f(P,i) \le \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \le M_f(P,i),$$

for $i = 1, \ldots, n$. Therefore,

$$\sum_{i=1}^{n} m_f(P, i)(x_i - x_{i-1}) \le \sum_{i=1}^{n} \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} (x_i - x_{i-1}) \le \sum_{i=1}^{n} M_f(P, i)(x_i - x_{i-1}).$$

Now

$$\sum_{i=1}^{n} \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} (x_i - x_{i-1}) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = f(b) - f(a).$$

Thus

$$L_f(P) \le f(b) - f(a) \le U_f(P).$$

Since this is true for every partition,

$$\underbrace{\int_{-a}^{b} f' \, dx \le f(b) - f(a) \le \overline{\int}_{-a}^{b} f' \, dx.}_{a}$$

Since f' is integrable, the upper sum equals the lower sum, so

$$\int_{a}^{b} f' \, dx = f(b) - f(a).$$

Date: December 3, 2003.

Proposition 2. Let $f : [a,b] \to \mathbb{R}$ be integrable. If $f(x) \ge 0$ for all $x \in [a,b]$, then $\int_a^b f \, dx \ge 0$.

Proof. Clearly for any partition P, we have $U_f(P) \ge 0$. Thus taking the infimum gives $\overline{\int} f \, dx \ge 0$. But f is integrable, so $\int f \, dx = \overline{\int} f \, dx \ge 0$. \Box

Proposition 3. Let $f, g : [a, b] \to \mathbb{R}$ be integrable. If $f(x) \leq g(x)$ for every $x \in [a, b]$, then

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx.$$

Proof. We see that $(g - f)(x) \ge 0$ for every $x \in [a, b]$, so

$$\int_a^b g \, dx - \int_a^b f \, dx = \int_a^b (g - f) \, dx \ge 0,$$

which implies that

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx.$$

Proposition 4. Let f(x) = M be a constant. Then $\int_a^b f \, dx = M(b-a)$.

Proof. Let F(x) = Mx. Then f(x) = F'(x), and $\int_a^b f \, dx = F(b) - F(a) = Mb - Ma = M(b-a)$.

Proposition 5. Let $f : [a, b] \to \mathbb{R}$ be integrable and bounded, so that $|f(x)| \le M$ for some M > 0. Then $\int_a^b f \, dx \le M(b-a)$.

Let $D\subset \mathbb{R}$ and let $f:D\to \mathbb{R}$ be any function. Define a function $f^+:D\to \mathbb{R}$ by

$$f^{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Also define $f^-: D \to \mathbb{R}$ by

$$f^{-}(x) = \begin{cases} -f(x) & \text{if } f(x) \le 0; \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

(a) $f^- = (-f)^+;$ (b) $f = f^+ - f^-;$ (c) $|f| = f^+ + f^-.$

Proposition 6. Let $f : [a,b] \to \mathbb{R}$ be integrable. Then $f^+ : [a,b] \to \mathbb{R}$ is also integrable.

Proof. Let $\epsilon > 0$ and let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b] such that $U_f(P) - L_f(P) < \epsilon$. Then for every *i* we have $M_f(P, i) \ge M_{f^+}(P, i)$, and $m_f(P, i) \le m_{f^+}(P, i)$; this implies that $M_{f^+}(P, i) - m_{f^+}(P, i) \le M_f(P, i) - m_f(P, i)$. Thus

$$U_{f^+}(P) - L_{f^+}(P) = \sum_{i=1}^n (M_{f^+}(P,i) - m_{f^+}(P,i))(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^n (M_f(P,i) - m_f(P,i))(x_i - x_{i-1})$$

$$= U_f(P) - L_f(P)$$

$$\leq \epsilon.$$

This shows that f^+ is integrable.

Proposition 7. Let $f : [a, b] \to \mathbb{R}$ be integrable. Then |f| is integrable, and $|\int_a^b f \, dx| \leq \int_a^b |f| \, dx$.

Proof. We just saw that f^+ is integrable. Also -f is integrable, so $f^- = (f)^+$ is integrable. Therefore $|f| = f^+ + f^-$ is integrable.

$$\left| \int_{a}^{b} f \, dx \right| = \left| \int_{a}^{b} f^{+} \, dx - \int_{a}^{b} f^{-} \, dx \right| \le \left| \int_{a}^{b} f^{+} \, dx + \int_{a}^{b} f^{-} \, dx \right| = \int_{a}^{b} |f| \, dx.$$

Observation 1. As a convenience, if a > b, then define $\int_a^b f \, dx = -\int_b^a f \, dx$. Then it follows from a previous proposition that

$$\int_{a}^{b} f \, dx - \int_{a}^{c} f \, dx = \int_{c}^{b} f \, dx.$$

Observation 2. If c is constant, then $c = \frac{\int_a^b c \, dx}{b-a}$.

Proposition 8. Let $f : [a, b] \to \mathbb{R}$ be bounded and integrable. Define

$$F: [a,b] \to \mathbb{R}$$
 by $F(x) = \int_a^x f(t) dt.$

Then

- (a) F is uniformly continuous on [a, b];
- (b) if f is continuous at x_0 , then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

Proof. Since f is bounded, there exits M > 0 such that $|f(x)| \leq M$ for all $x \in [a, b]$.

Let $\epsilon > 0$ and let $\delta = \epsilon/M$. Let $x, y \in [a, b]$, and suppose that $|x - y| < \delta$. Then

$$|F(x) - F(y)| = \left| \int_{a}^{x} f(t) dt - \int_{a}^{y} f(t) dt \right|$$
$$= \left| \int_{x}^{y} f(t) dt \right|$$
$$\leq M|x - y|$$
$$= \epsilon.$$

Therefore, F is continuous.

Suppose that f is continuous at x_0 . Select $\epsilon > 0$; then there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \frac{\epsilon}{2}$. Note that this says that for every $t \in [x, x_0]$, we have $|f(t) - f(x_0)| < \frac{\epsilon}{2}$. Compute

$$\left|\frac{F(x) - F(x_0)}{x - x_0} - f(x_0)\right| = \left|\frac{\int_a^x f(t) \, dt - \int_a^{x_0} f(t) \, dt}{x - x_0} - f(x_0)\right|$$
$$= \left|\frac{\int_{x_0}^x f(t) \, dt}{x - x_0} - \frac{\int_{x_0}^x f(x_0) \, dx}{x - x_0}\right|$$
$$= \left|\frac{\int_{x_0}^x (f(t) - f(x_0)) \, dt}{x - x_0}\right|$$
$$\leq \left|\frac{(\epsilon/2)(x - x_0)}{x - x_0}\right|$$
$$= \frac{\epsilon}{2}$$
$$< \epsilon.$$

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$